Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion


Neuenkirch, Andreas



URL: https://arxiv.org/abs/0706.2636
Dokumenttyp: Arbeitspapier
Erscheinungsjahr: 2007
Ort der Veröffentlichung: Ithaca, NY
Verlag: Cornell University
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Wirtschaftsmathematik II: Stochastische Numerik (Neuenkirch 2013-)
Fachgebiet: 510 Mathematik
Abstract: We study the approximation of stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H>1/2. For the mean-square error at a single point we derive the optimal rate of convergence that can be achieved by any approximation method using an equidistant discretization of the driving fractional Brownian motion. We find that there are mainly two cases: either the solution can be approximated perfectly or the best possible rate of convergence is n−H−1/2, where n denotes the number of evaluations of the fractional Brownian motion. In addition, we present an implementable approximation scheme that obtains the optimal rate of convergence in the latter case.




Dieser Datensatz wurde nicht während einer Tätigkeit an der Universität Mannheim veröffentlicht, dies ist eine Externe Publikation.




Metadaten-Export


Zitation


+ Suche Autoren in

BASE: Neuenkirch, Andreas

Google Scholar: Neuenkirch, Andreas

ORCID: Neuenkirch, Andreas ORCID: 0000-0002-0419-1225

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen