Can we predict new facts with open knowledge graph embeddings? A benchmark for open link prediction
Broscheit, Samuel
;
Gashteovski, Kiril
;
Wang, Yanjie
;
Gemulla, Rainer
|
PDF
Can We Predict New Facts with Open Knowledge Graph Embeddings A Benchmark for Open Link Prediction.pdf
- Veröffentlichte Version
Download (648kB)
|
URL:
|
https://madoc.bib.uni-mannheim.de/55724
|
Weitere URL:
|
https://www.aclweb.org/anthology/2020.acl-main.209...
|
URN:
|
urn:nbn:de:bsz:180-madoc-557240
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr:
|
2020
|
Buchtitel:
|
ACL 2020 : the 58th Annual Meeting of the Association for Computational Linguistics, proceedings of the conference, ACL 2020The 58th Annual Meeting of theAssociation for Computational LinguisticsProceedings of the Conference, July 5 - 10, 2020
|
Seitenbereich:
|
2296-2308
|
Veranstaltungstitel:
|
ACL 2020
|
Veranstaltungsort:
|
Online
|
Veranstaltungsdatum:
|
05.-10.07.2020
|
Herausgeber:
|
Jurafsky, Dan
|
Ort der Veröffentlichung:
|
Stroudsburg, PA
|
Verlag:
|
Association for Computational Linguistics
|
ISBN:
|
978-1-952148-25-5
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science I: Data Analytics (Gemulla 2014-)
|
Lizenz:
|
Creative Commons Namensnennung 4.0 International (CC BY 4.0)
|
Fachgebiet:
|
004 Informatik
|
Abstract:
|
Open Information Extraction systems extract(“subject text”, “relation text”, “object text”)triples from raw text. Some triples are textualversions of facts, i.e., non-canonicalized men-tions of entities and relations. In this paper, weinvestigate whether it is possible to infernewfacts directly from theopen knowledge graphwithout any canonicalization or any supervi-sion from curated knowledge. For this pur-pose, we propose the open link prediction task,i.e., predicting test facts by completing(“sub-ject text”, “relation text”, ?)questions. Anevaluation in such a setup raises the question ifa correct prediction is actually anewfact thatwas induced by reasoning over the open knowl-edge graph or if it can be trivially explained.For example, facts can appear in different para-phrased textual variants, which can lead to testleakage. To this end, we propose an evaluationprotocol and a methodology for creating theopen link prediction benchmark OLPBENCH.We performed experiments with a prototypicalknowledge graph embedding model for openlink prediction. While the task is very chal-lenging, our results suggests that it is possibleto predict genuinely new facts, which can notbe trivially explained.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
| Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt. |
Suche Autoren in
BASE:
Broscheit, Samuel
;
Gashteovski, Kiril
;
Wang, Yanjie
;
Gemulla, Rainer
Google Scholar:
Broscheit, Samuel
;
Gashteovski, Kiril
;
Wang, Yanjie
;
Gemulla, Rainer
ORCID:
Broscheit, Samuel, Gashteovski, Kiril, Wang, Yanjie and Gemulla, Rainer ORCID: https://orcid.org/0000-0003-2762-0050
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|