When shallow is good enough: Automatic assessment of conceptual text complexity using shallow semantic features


Štajner, Sanja ; Hulpus, Ioana


[img] PDF
2020.lrec-1.177.pdf - Veröffentlichte Version

Download (367kB)

URL: https://madoc.bib.uni-mannheim.de/55729
Weitere URL: https://www.aclweb.org/anthology/2020.lrec-1.177/
URN: urn:nbn:de:bsz:180-madoc-557291
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2020
Buchtitel: LREC 2020 Marseille : Twelfth International Conference on Language Resources and Evaluation : May 11-16, 2020, Palais du Pharo, Marseille, France : conference proceedings
Seitenbereich: 1414-1422
Veranstaltungstitel: LREC 2020 (conference canceled)
Veranstaltungsort: Marseille, France
Veranstaltungsdatum: canceled
Herausgeber: Calzolari, Nicoletta
Ort der Veröffentlichung: Paris
Verlag: European Language Resources Association, ELRA-ELDA
ISBN: 979-10-95546-34-4
Verwandte URLs:
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Bereits vorhandene Lizenz: Creative Commons Namensnennung, nicht kommerziell 4.0 International (CC BY-NC 4.0)
Fachgebiet: 020 Bibliotheks- und Informationswissenschaft
Abstract: According to psycholinguistic studies, the complexity of concepts used in a text and the relations between mentioned concepts play the most important role in text understanding and maintaining reader’s interest. However, the classical approaches to automatic assessment of text complexity, and their commercial applications, take into consideration mainly syntactic and lexical complexity. Recently, we introduced the task of automatic assessment of conceptual text complexity, proposing a set of graph-based deep semantic features using DBpedia as a proxy to human knowledge. Given that such graphs can be noisy, incomplete, and computationally expensive to deal with, in this paper, we propose the use of textual features and shallow semantic features that only require entity linking. We compare the results obtained with new features with those of the state-of-the-art deep semantic features on two tasks: (1) pairwise comparison of two versions of the same text; and (2) five-level classification of texts. We find that the shallow features achieve state-of-the-art results on both tasks, significantly outperforming performances of the deep semantic features on the five-level classification task. Interestingly, the combination of the shallow and deep semantic features lead to a significant improvement of the performances on that task.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen