Missing data and other measurement quality issues in mobile geolocation sensor data


Bähr, Sebastian ; Haas, Georg-Christoph ; Keusch, Florian ; Kreuter, Frauke ; Trappmann, Mark


[img] PDF
0894439320944118.pdf - Veröffentlichte Version

Download (339kB)

DOI: https://doi.org/10.1177/0894439320944118
URL: https://madoc.bib.uni-mannheim.de/55915
Weitere URL: https://journals.sagepub.com/doi/10.1177/089443932...
URN: urn:nbn:de:bsz:180-madoc-559151
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2022
Titel einer Zeitschrift oder einer Reihe: Social Science Computer Review : SSCORE
Band/Volume: 40
Heft/Issue: 1
Seitenbereich: 212-235
Ort der Veröffentlichung: Thousand Oaks, Calif. [u.a.]
Verlag: Sage
ISSN: 0894-4393 , 1552-8286
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Sozialwissenschaften > Statistik u. Sozialwiss. Methodenlehre (Juniorprofessur) (Keusch 2016-2021)
Bereits vorhandene Lizenz: Creative Commons Namensnennung 4.0 International (CC BY 4.0)
Abstract: As smartphones become increasingly prevalent, social scientists are recognizing the ubiquitous data generated by the sensors built into these devices as an innovative data source. Passively collected data from sensors that measure geolocation or movement provide an unobtrusive way to observe participants in everyday situations and are free from reactivity biases. Information on day-to-day geolocation could provide valuable insights into human behavior that cannot be collected via surveys. However, little is known about the quality of the resulting data. Using data from a 2018 German population-based probability app study, this article focuses on the measurement quality of geolocation sensor data, with a strong focus on missing measurements. Geolocation sensor data are an example of an available data type that is of interest to social science research. Our findings can be applied to the wider subject of sensor data. In our article, we demonstrate (1) that sensor data are far from error-free. Instead, device-related error sources, such as the manufacturer and operating system settings, design decisions of the research app, third-party apps, and the participant, can interfere with the measurement. To disentangle the different influences, we (2) apply a multistage error model to analyze and control the error sources in the specific missingness process of geolocation data. We (3) raise awareness of error sources in geolocation measurement, such as the use of GPS falsifier apps, or device sharing among participants. By identifying the different error sources and analyzing their determinants, we recommend (4) identification strategies for future research.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen