How did Ebola information spread on Twitter: broadcasting or viral spreading?


Liang, Hai ; Fung, Isaac Chun-Hai ; Tse, Zion Tsz Ho ; Yin, Jingjing ; Chan, Chung-hong ; Pechta, Laura E. ; Smith, Belinda J. ; Marquez-Lameda, Rossmary D. ; Meltzer, Martin I. ; Lubell, Keri M. ; Fu, King-wa


[img] PDF
s12889-019-6747-8.pdf - Veröffentlichte Version

Download (787kB)

DOI: https://doi.org/10.1186/s12889-019-6747-8
URL: https://madoc.bib.uni-mannheim.de/58635
Weitere URL: https://bmcpublichealth.biomedcentral.com/articles...
URN: urn:nbn:de:bsz:180-madoc-586358
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2019
Titel einer Zeitschrift oder einer Reihe: BMC Public Health
Band/Volume: 19
Heft/Issue: Article 438
Seitenbereich: 1-11
Ort der Veröffentlichung: London
Verlag: BioMed Central
ISSN: 1471-2458
Sprache der Veröffentlichung: Englisch
Einrichtung: Außerfakultäre Einrichtungen > MZES - Arbeitsbereich B
Bereits vorhandene Lizenz: Creative Commons Namensnennung 4.0 International (CC BY 4.0)
Fachgebiet: 320 Politik
Abstract: Background Information and emotions towards public health issues could spread widely through online social networks. Although aggregate metrics on the volume of information diffusion are available, we know little about how information spreads on online social networks. Health information could be transmitted from one to many (i.e. broadcasting) or from a chain of individual to individual (i.e. viral spreading). The aim of this study is to examine the spreading pattern of Ebola information on Twitter and identify influential users regarding Ebola messages. Methods Our data was purchased from GNIP. We obtained all Ebola-related tweets posted globally from March 23, 2014 to May 31, 2015. We reconstructed Ebola-related retweeting paths based on Twitter content and the follower-followee relationships. Social network analysis was performed to investigate retweeting patterns. In addition to describing the diffusion structures, we classify users in the network into four categories (i.e., influential user, hidden influential user, disseminator, common user) based on following and retweeting patterns. Results On average, 91% of the retweets were directly retweeted from the initial message. Moreover, 47.5% of the retweeting paths of the original tweets had a depth of 1 (i.e., from the seed user to its immediate followers). These observations suggested that the broadcasting was more pervasive than viral spreading. We found that influential users and hidden influential users triggered more retweets than disseminators and common users. Disseminators and common users relied more on the viral model for spreading information beyond their immediate followers via influential and hidden influential users. Conclusions Broadcasting was the dominant mechanism of information diffusion of a major health event on Twitter. It suggests that public health communicators can work beneficially with influential and hidden influential users to get the message across, because influential and hidden influential users can reach more people that are not following the public health Twitter accounts. Although both influential users and hidden influential users can trigger many retweets, recognizing and using the hidden influential users as the source of information could potentially be a cost-effective communication strategy for public health promotion. However, challenges remain due to uncertain credibility of these hidden influential users.
Zusätzliche Informationen: Online-Ressource




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen