Traffic flow models with nonlocal velocity

Friedrich, Jan

Additional URL:
Document Type: Doctoral dissertation
Year of publication: 2021
Place of publication: München
Publishing house: Dr. Hut
ISBN: 978-3-8439-4903-3 , 3-8439-4903-4
University: Universität Mannheim
Evaluator: Göttlich, Simone
Date of oral examination: 6 September 2021
Publication language: English
Institution: School of Business Informatics and Mathematics > Wissenschaftliches Rechnen (Göttlich 2011-)
Subject: 510 Mathematics
Abstract: In this thesis, we present so–called nonlocal traffic flow models which possess more information about surrounding traffic. Such models become more and more important due to the progress in autonomous driving. They are described through partial differential equations conserving the mass. We focus on models in which the nonlocality is included via an integral evaluation of the velocity in terms of a convolution product in a certain nonlocal range. Here, we introduce a base model which considers the mean downstream velocity and assumes that the underlying speed law remains the same on the whole road. Moreover, we extend this nonlocal traffic flow model by allowing for a spatial change in the speed law. In order to approximate solutions, we introduce a numerical scheme of upwind type. We derive several properties of this scheme which enable us to prove the existence of weak (entropy) solutions. Furthermore, we prove the uniqueness of solutions: for the base model, we obtain uniqueness of weak solutions and for the extended model, uniqueness of weak entropy solutions. Then, we provide further extensions of the presented models. First, we extend the nonlocal traffic flow model to networks while keeping the basic idea of being driven by a mean downstream velocity. We propose necessary assumptions on the coupling of different roads to obtain a well defined network model. Further, we consider the modeling of a single road more closely and distinguish between several lanes. The coupling of these lanes is induced by a nonlocal source term. In particular, this nonlocality can differ from the one responsible for the transport and can depend on down- and upstream traffic. Finally, starting from a microscopic model and proving rigorously the macroscopic limit, we introduce a second order nonlocal traffic flow model which conserves the mass and momentum. For all extensions, we present suitable numerical approximations and use these to prove the existence of weak solutions.

Dieser Eintrag ist Teil der Universitätsbibliographie.

Metadata export


+ Search Authors in

+ Page Views

Hits per month over past year

Detailed information

You have found an error? Please let us know about your desired correction here: E-Mail

Actions (login required)

Show item Show item