Uncertainty, risk, and financial disclosures : applications of natural language processing in behavioral economics


Theil, Christoph Kilian


[img] PDF
theil_dissertation.pdf - Veröffentlichte Version

Download (2MB)

URN: urn:nbn:de:bsz:180-madoc-625821
Dokumenttyp: Dissertation
Erscheinungsjahr: 2022
Ort der Veröffentlichung: Mannheim
Hochschule: Universität Mannheim
Gutachter: Stuckenschmidt, Heiner
Datum der mündl. Prüfung: 16 Mai 2022
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Fachgebiet: 004 Informatik
330 Wirtschaft
Freie Schlagwörter (Englisch): natural language processing ; artificial intelligence ; behavioral economics ; behavioral finance ; linguistic uncertainty ; risk perception ; financial risk ; financial disclosures ; text classification ; risk regression
Abstract: In the last decade, natural language processing (NLP) methods have received increasing attention for applications in behavioral economics. Such methods enable the automatic content analysis of large corpora of financial disclosures, e.g., annual reports or earnings calls. In this setting, a conceptually interesting but underexplored variable is linguistic uncertainty: Due to the unpredictability of the financial market, it is often necessary for corporate management to use hedge expressions such as “likely” or “possible” in their financial communication. On the other hand, management can also use uncertain language to influence investors strategically, for example, through deliberate obfuscation. In this dissertation, we present NLP methods for the automated detection of linguistic uncertainty. Furthermore, we introduce the first experimental study to establish a causal link between linguistic uncertainty and investor behavior. Finally, we propose regression models to explain and predict financial risk. In addition to the independent variable of linguistic uncertainty, we explore a psychometric and an assumption-free model based on Deep Learning.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen