Estimation of group structures in panel models with individual fixed effects


Mammen, Enno ; Wilke, Ralf A. ; Zapp, Kristina Maria


[img] PDF
dp22023.pdf - Veröffentlichte Version

Download (786kB)

URN: urn:nbn:de:bsz:180-madoc-627372
Dokumenttyp: Arbeitspapier
Erscheinungsjahr: 2022
Titel einer Zeitschrift oder einer Reihe: ZEW Discussion Papers
Band/Volume: 22-023
Ort der Veröffentlichung: Mannheim
Sprache der Veröffentlichung: Englisch
Einrichtung: Sonstige Einrichtungen > ZEW - Leibniz-Zentrum für Europäische Wirtschaftsforschung
MADOC-Schriftenreihe: Veröffentlichungen des ZEW (Leibniz-Zentrum für Europäische Wirtschaftsforschung) > ZEW Discussion Papers
Fachgebiet: 330 Wirtschaft
Fachklassifikation: JEL: C14 , C23 , C38,
Freie Schlagwörter (Englisch): panel data , statistical learning , regularisation , endogeneity
Abstract: The fixed effects (FE) panel model is one of the main econometric tools in empirical economic research. A major practical limitation is that the parameters on time-constant covariates are not identifiable. This paper presents a new approach to grouping FE in the linear panel model to reduce their dimensionality and ensure identifiability. By using unsupervised nonparametric density based clustering, cluster patterns including their location and number are not restricted. The approach works with large data structures (units and groups) and only clusters units that are sufficiently similar, while leaving others as unclustered atoms. Asymptotic theory and rates of convergence are presented. With the help of simulations and an application to economic data it is shown that the suggested method performs well and gives more insightful and efficient results than conventional panel models.




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen