Decision support for S&OP coordination under
asymmetric decision-making power: A case study
from the agrochemical industry
Loeffel, Christoph
;
Fleischmann, Moritz
;
Klosterhalfen, Steffen
;
Hausen, Tobias
Dokumenttyp:
|
Präsentation auf Konferenz
|
Erscheinungsjahr:
|
2022
|
Veranstaltungstitel:
|
OR 2022, Jahrestagung der Gesellschaft für Operations Research (GOR)
|
Veranstaltungsort:
|
Karlsruhe, Germany
|
Veranstaltungsdatum:
|
06.- 09.09.2022
|
Verwandte URLs:
|
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Betriebswirtschaftslehre > ABWL u. Logistik (Fleischmann 2009-)
|
Fachgebiet:
|
330 Wirtschaft
|
Abstract:
|
To serve the seasonal demand for crop protection products by farmers around the globe, agrochemical companies must operate multiechelon, long lead time supply chains. In order to prepare for an uncertain season, integrated planning across functions is key. At the case company, cross-functional coordination is reached through annual S&OP budget meetings hosted by the business unit head together with senior management of relevant functions such as sales and supply chain. Through the budgeting process, a shared plan is developed to coordinate commercial plans of the sales department and production plans of the supply chain organization, both of which need to react to short-term market signals. Sales and supply chain therefore agree on a set of volume guarantees for the available supply throughout the planning horizon. The guarantees are subject to a maximum inventory level imposed by the business unit head. Our project focuses on the choice of these volume guarantees. Specifically, we support the iterative and unstructured negotiation process currently in place at the case company, by developing an optimization-based budget planning model.
Importantly, the model reflects existing differences in decision making scope and power of the relevant actors. In addition, the model captures the available flexibility of future plan adjustments. To this end, we use an affine adjustable robust optimization (AARO) approach. In a numerical study, we empirically evaluate our model against simple benchmarks and study the solution structure of the obtained guarantee allocations.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|