The weak convergence order of two Euler-type discretization schemes for the log-Heston model


Mickel, Annalena ; Neuenkirch, Andreas



DOI: https://doi.org/10.1093/imanum/drac069
URL: https://academic.oup.com/imajna/article/43/6/3326/...
Document Type: Article
Year of publication: 2023
The title of a journal, publication series: IMA Journal of Numerical Analysis : IMAJNA
Volume: 43
Issue number: 6
Page range: 3326-3356
Place of publication: Oxford
Publishing house: Oxford Univ. Press
ISSN: 0272-4979 , 1464-3642
Related URLs:
Publication language: English
Institution: School of Business Informatics and Mathematics > Wirtschaftsmathematik II: Stochastische Numerik (Neuenkirch 2013-)
Subject: 510 Mathematics
Abstract: We study the weak convergence order of two Euler-type discretizations of the log-Heston model where we use symmetrization and absorption, respectively, to prevent the discretization of the underlying CIR process from becoming negative. If the Feller index $\nu$ of the CIR process satisfies $\nu > 1$, we establish weak convergence order one, while for $\nu \leq 1, we obtain weak convergence order $\nu -\varepsilon$ for $\varepsilon > 0$ arbitrarily small. We illustrate our theoretical findings by several numerical examples.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadata export


Citation


+ Search Authors in

BASE: Mickel, Annalena ; Neuenkirch, Andreas

Google Scholar: Mickel, Annalena ; Neuenkirch, Andreas

ORCID: Mickel, Annalena ; Neuenkirch, Andreas ORCID: 0000-0002-0419-1225

+ Page Views

Hits per month over past year

Detailed information



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item