Rigorous derivation of the degenerate parabolic-elliptic Keller-Segel System from a moderately interacting stochastic particle system


Gvozdik, Veniamin


[img] PDF
Veniamin Gvozdik final.pdf - Veröffentlichte Version

Download (977kB)

URN: urn:nbn:de:bsz:180-madoc-635369
Dokumenttyp: Dissertation
Erscheinungsjahr: 2022
Ort der Veröffentlichung: Mannheim
Hochschule: Universität Mannheim
Gutachter: Chen, Li
Datum der mündl. Prüfung: 28 November 2022
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Applied Analysis (Chen 2014-)
Fachgebiet: 510 Mathematik
Freie Schlagwörter (Englisch): moderately interacting particle systems , stochastic particle systems , mean-field limit , chemotaxis , Keller–Segel model , degenerate parabolic-elliptic system , propagation of chaos
Abstract: The main goal of this thesis is a rigorous derivation of the degenerate parabolic-elliptic Keller-Segel system of porous medium type on the whole space Rd from a moderately interacting stochastic particle system. After we review some existing results on this topic and introduce the setting of the problem as well as the main results of this thesis, we establish the classical solution theory of the degenerate parabolic-elliptic Keller-Segel system and its non-local version. This classical solution theory is used later to obtain required estimates on the particle level. Because of the non-linearity in diffusion and the singularity in aggregation we perform an approximation of the stochastic moderately interacting particle system using the cut-offed potential. The stochastic effect is introduced as a parabolic regularization of the system. Then we compare this new system with another cut-offed system of mean-field type. We present the propagation of chaos result with two different types of cut-off scaling, namely logarithmic and algebraic scaling. For the logarithmic scaling we prove the convergence of trajectories in expectation. For the algebraic scaling we obtain it in the sense of probability. Consequently, the propagation of chaos follows directly from these convergence results and the vanishing viscosity of the system.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen