Efficient methods for optimal control problems subject to partial differential equations with uncertain coefficients


Guth, Philipp Arthur


[img] PDF
Dissertation_GuthPh.pdf - Veröffentlichte Version

Download (38MB)

URN: urn:nbn:de:bsz:180-madoc-636897
Dokumenttyp: Dissertation
Erscheinungsjahr: 2022
Ort der Veröffentlichung: Mannheim
Hochschule: Universität Mannheim
Gutachter: Schillings, Claudia
Datum der mündl. Prüfung: 21 Dezember 2022
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Mathematische Optimierung (Schillings 2017-2022)
Fachgebiet: 510 Mathematik
Normierte Schlagwörter (SWD): Optimierung , Stochastische Optimierung , Parametrische Optimierung , Numerische Integration , Partielle Differentialgleichung
Freie Schlagwörter (Englisch): optimization under uncertainty , optimal control with partial differential equations under uncertainty , Quasi-Monte Carlo integration , multilevel optimization , high-dimensional integration
Abstract: In this thesis, we develop and analyze methods to efficiently solve optimization problems under uncertainty, constrained by partial differential equations (PDEs). The uncertainties may arise due to noisy measurements, unknown or unobservable parameters, model ambiguity, or intrinsic randomness of systems. The goal is to find a control which is robust with respect to variations in the uncertain parameters. We prove error bounds and convergence rates for the developed methods, confirm the theoretically derived results through numerical experiments, and examine the developed concepts with regard to their efficiency. The focus of this work is the application and analysis of quasi-Monte Carlo methods, as well as the use of surrogate models for computationally intensive systems in conjunction with a penalty strategy. We first analyze a general formulation of the optimal control problem for the existence and uniqueness of solutions, and then focus on three example problems of optimal control under uncertainty. The regularity of the problems with respect to the uncertain parameters plays a crucial role in the development and the error analysis of the methods. The numerical treatment of the considered problems requires different approximation methods. The total approximation error is decomposed into its components and each error contribution is then studied separately in a chapter. The error estimates and convergence results developed in these chapters are not limited to problems of optimal control subject to PDE constraints with uncertain coefficients. In addition, further strategies to increase the efficiency of the methods are investigated, such as multilevel strategies and the simultaneous solving of the optimal control problem and learning of surrogate models for computationally intensive models.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen