Designing an AI purchasing requisition bundling generator
Spreitzenbarth, Jan
;
Bode, Christoph
;
Stuckenschmidt, Heiner
DOI:
|
https://doi.org/10.1016/j.compind.2023.104043
|
URL:
|
https://www.sciencedirect.com/science/article/abs/...
|
URN:
|
urn:nbn:de:bsz:180-madoc-658918
|
Dokumenttyp:
|
Zeitschriftenartikel
|
Erscheinungsjahr:
|
2023
|
Titel einer Zeitschrift oder einer Reihe:
|
Computers in Industry
|
Band/Volume:
|
155, Article 104043
|
Seitenbereich:
|
1-14
|
Ort der Veröffentlichung:
|
Amsterdam [u.a.]
|
Verlag:
|
Elsevier Science
|
ISSN:
|
0166-3615
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-) Fakultät für Betriebswirtschaftslehre > Stiftungslehrstuhl für Procurement (Bode 2014-)
|
Fachgebiet:
|
004 Informatik 650 Management
|
Freie Schlagwörter (Englisch):
|
bundling problem , automotive case study , design science methodology , purchasing and supply management , artificial intelligence , industry 4.0
|
Abstract:
|
Following the design science methodology, a recommender system has been created with the research objective of finding a novel approach to the bundling problem in order to generate data-driven insights identifying cost potentials across an organization. In this study, a concept that has been implemented in business-to-business marketing at IBM is taken over to procurement in the automotive industry to provide decision support.
Thereby, this work builds on information processing theory to utilize artificial intelligence technologies, i.e., natural language processing and supervised learning to augment the skills of buyers, whereby design principles were derived for information technology providers and procurement organizations in private and public settings worldwide. As a key finding, overall, Mini Batch K-means was the most performative model among the selected clustering algorithms. Furthermore, through actively making use of purchasing requisition data typically available in enterprise resource planning systems, the bundling generator artifact can lead to significant improvements in strategic planning and commodity management resulting in better utilization of buyer’s capacities, tender designs, and thus procurement’s value contribution in the transformation toward industry 4.0. The empirical study contributes to the literature on bundling and spend analysis, which has predominantly relied on historical data. By incorporating requisition data, which poses inherent challenges of precision and informationrichness, this work expands this traditional approach with a forward-looking perspective.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|