Latent variable forests for latent variable score estimation


Classe, Franz ; Kern, Christoph


[img] PDF
classe-kern-2024-latent-variable-forests-for-latent-variable-score-estimation.pdf - Published

Download (352kB)

DOI: https://doi.org/10.1177/00131644241237502
URL: https://journals.sagepub.com/doi/full/10.1177/0013...
URN: urn:nbn:de:bsz:180-madoc-669886
Document Type: Article
Year of publication Online: 2024
The title of a journal, publication series: Educational and Psychological Measurement : EPM
Volume: tba
Issue number: tba
Page range: 1-35
Place of publication: Thousand Oaks, Calif. [u.a.]
Publishing house: Sage Periodicals Press
ISSN: 0013-1644
Publication language: English
Institution: Außerfakultäre Einrichtungen > Mannheim Centre for European Social Research - Research Department A
Pre-existing license: Creative Commons Attribution 4.0 International (CC BY 4.0)
Subject: 310 Statistics
Abstract: We develop a latent variable forest (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on confirmatory factor analysis (CFA) models with ordinal and/or numerical response variables. Through parametric model restrictions paired with a nonparametric tree-based machine learning approach, LV Forest estimates latent variable scores using models that are unbiased with respect to relevant subgroups in the population. This way, estimated latent variable scores are interpretable with respect to systematic influences of covariates without being biased by these variables. By building a tree ensemble, LV Forest takes parameter heterogeneity in latent variable modeling into account to capture subgroups with both good model fit and stable parameter estimates. We apply LV Forest to simulated data with heterogeneous model parameters as well as to real large-scale survey data. We show that LV Forest improves the accuracy of score estimation if parameter heterogeneity is present.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Diese Publikation ist bisher nur Online erschienen. Diese Publikation nun als "Jetzt in Print erschienen" melden.




Metadata export


Citation


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item