Safe AI made in the EU: Proposal for an EU safe generative AI innovation program


Rehse, Dominik ; Valet, Sebastian ; Walter, Johannes


[img] PDF
pb22-24.pdf - Veröffentlichte Version

Download (180kB)

URN: urn:nbn:de:bsz:180-madoc-703980
Dokumenttyp: Arbeitspapier
Erscheinungsjahr: 2024
Titel einer Zeitschrift oder einer Reihe: ZEW policy brief
Band/Volume: 2024-22
Ort der Veröffentlichung: Mannheim
Sprache der Veröffentlichung: Englisch
Einrichtung: Sonstige Einrichtungen > ZEW - Leibniz-Zentrum für Europäische Wirtschaftsforschung
MADOC-Schriftenreihe: Veröffentlichungen des ZEW (Leibniz-Zentrum für Europäische Wirtschaftsforschung) > ZEW policy brief
Fachgebiet: 330 Wirtschaft
Abstract: We propose an EU Safe Generative AI Innovation Program to address a market failure in generative AI development. While developers can capture significant value from generative AI capability improvements, they bear only a fraction of potential safety failure costs, which leads to underinvestment in the technological breakthroughs necessary to make generative AI safe. The EU should establish explicit incentives for the necessary technological breakthroughs, complementing its existing policy responses to the rapid proliferation of generative AI. We propose a milestone-based incentive scheme where pre-specified payments would reward the achievement of verifiable safety milestones. This “pull” funding mechanism would aim to create predictable development paths for safety improvements, similar to how scaling laws have guided capability advances. The scheme would use robust safety metrics and competitive evaluation to prevent gaming while ensuring meaningful progress. Success would be measured through a combination of specific safety dimensions (like factual accuracy and harm prevention) and broader performance metrics, validated through adversarial testing and public comparative evaluation. The program’s design would be technology-neutral and it could be open to all qualified institutions, with rewards calibrated through incentive-compatible elicitation mechanisms. This approach mirrors other applications of outcome-based funding, such as advance market commitments in vaccine development. It might also provide the breeding ground for “Safe AI made in the EU”.




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen