GARCH models with long memory and nonparametric specifications
Conrad, Christian
URL:
|
https://madoc.bib.uni-mannheim.de/1310
|
URN:
|
urn:nbn:de:bsz:180-madoc-13108
|
Document Type:
|
Doctoral dissertation
|
Year of publication:
|
2006
|
The title of a journal, publication series:
|
None
|
Place of publication:
|
Mannheim
|
University:
|
Universität Mannheim
|
Evaluator:
|
Mammen, Enno
|
Date of oral examination:
|
28 July 2006
|
Publication language:
|
English
|
Institution:
|
School of Law and Economics > Statistik (Mammen)
|
Subject:
|
330 Economics
|
Classification:
|
JEL:
C12 C14 C22 C52 E31 G12 ,
|
Subject headings (SWD):
|
Ökonometrie , GARCH-Prozess , Long-memory-Prozess , Inflation , Nichtparametrische Regression
|
Keywords (English):
|
Econometrics , GARCH , Long Memory , Inflation Persistence , Nonparametric Regression
|
Abstract:
|
This thesis addresses two major topics which have recently received considerable attention in the financial econometrics literature: (i) long memory GARCH models and (ii) GARCH-in-Mean models with nonparametric specifications. Chapter 1 contains an introduction. Chapter 2 is concerned with the Fractionally Integrated GARCH(p,d,q) model of Baillie et al. (1996). We derive conditions on the parameters of the FIGARCH(p,d,q) process which guarantee the nonnegativity of the conditional variance. The conditions are necessary and sufficient for p less than or equal to two and sufficient for p greater than two. In Chapter 3 we turn to the Long Memory GARCH process of Karanasos et al. (2004). We derive convenient representations for the impulse response function which can be used to measure the persistence of shocks to the conditional variance. Chapters 4 and 5 are concerned with the empirical application of dual long memory models. In a first step, ARFIMA-FIGARCH models are applied to analyze the dynamics of European and international inflation data. In a second step, Granger methods are used to test several hypotheses concerning the causal relationship between inflation, nominal uncertainty and output growth. Chapter 6 deals with the GARCH-in-Mean model of Engle et al. (1987). In this model the risk premium is usually assumed to be either a linear or logarithmic function of the conditional variance or conditional standard deviation. We propose a specification test for the functional form of the risk premium in the GARCH-in-Mean model. The test statistic employs a nonparametric estimate of the shape of the risk premium.
|
Translation of the title:
|
GARCH Modelle mit langem Gedächtnis und nichtparametrischen Spezifikationen
(German)
|
Translation of the abstract:
|
Die vorliegende Dissertation leistet einen Beitrag zu zwei aktuellen Forschungsgebieten der Zeitreihenanalyse: (i) GARCH Modelle mit langem Gedächtnis und (ii) GARCH-in-Mean Modelle mit nichtparametrischen Spezifikationen. Kapitel 1 beinhaltet die Einleitung. Kapitel 2 behandelt das FIGARCH(p,d,q) Modell von Baillie et al. (1996). Es werden notwendige und hinreichende Bedingungen an die Parameter des FIGARCH(p,d,q) Prozesses für p kleiner gleich zwei und hinreichende Bedingungen für p größer als zwei hergeleitet, welche sicherstellen, dass die bedingte Varianz zu allen Zeitpunkten fast sicher nicht-negativ ist. In Kapitel 3 wird eine explizite Darstellung der Impulsantwortfunktion eines Schocks auf die bedingte Varianz im Long Memory GARCH Modell von Karanasos et al. (2004) abgeleitet. In Kapitel 4 und 5 werden Modelle mit langem Gedächtnis sowohl im bedingten Erwartungswert als auch in der bedingten Varianz verwendet, um die Persistenzeigenschaften der Inflationszeitreihen zehn europäischer Länder und den USA und Japan zu analysieren. Anschließend wird auf kausale Wechselwirkungen zwischen Inflation, Inflationsunsicherheit und Wachstum getestet. Ein Spezifikationstest für die funktionale Form der Risikoprämie im parametrischen GARCH-in-Mean Modell von Engle et al. (1987) wird in Kapitel 6 entwickelt.
(German)
|
Additional information:
|
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
| Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt. |
Search Authors in
You have found an error? Please let us know about your desired correction here: E-Mail
Actions (login required)
|
Show item |
|
|