Asymptotic Expansions for Multivariate Polynomial Approximation


Walz, Guido


[img]
Preview
PDF
237_1999.pdf - Published

Download (731kB)

URL: http://ub-madoc.bib.uni-mannheim.de/1597
URN: urn:nbn:de:bsz:180-madoc-15976
Document Type: Working paper
Year of publication: 1999
The title of a journal, publication series: None
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Mathematik > Mannheimer Manuskripte
Subject: 510 Mathematics
Subject headings (SWD): Bernstejn-Polynom , Polynomapproximation , Extrapolation
Keywords (English): Asymptotic Expansion , Bernstein Operator , Convergence Acceleration , Extrapolation , Multivariate Polynomial Approximation
Abstract: In this paper the approximation of multivariate functions by (multivariate) Bernstein polynomials is considered. Building on recent work of Lai, we can prove that the sequence of these Bernstein polynomials possesses an asymptotic expansion with respect to the index n. This generalizes a corresponding result due to Costabile, Gualtieri and Serra on univariate Bernstein polynomials, providing at the same time a new proof for it. After having shown the existence of an asymptotic expansion we can apply an extrapolation algorithm which accelerates the convergence of the Bernstein polynomials considerably; this leads to a new and very efficient method for polynomial approximation of multivariate functions. Numerical examples illustrate our approach.
Additional information:




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadata export


Citation


+ Search Authors in

BASE: Walz, Guido

Google Scholar: Walz, Guido

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item