Identification of Berezin-Toeplitz Deformation Quantization


Karabegov, Alexander V. ; Schlichenmaier, Martin


[img]
Vorschau
PDF
253_2000.pdf - Veröffentlichte Version

Download (2MB)

URL: http://ub-madoc.bib.uni-mannheim.de/1599
URN: urn:nbn:de:bsz:180-madoc-15997
Dokumenttyp: Arbeitspapier
Erscheinungsjahr: 2000
Titel einer Zeitschrift oder einer Reihe: None
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC-Schriftenreihe: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Mathematik > Mannheimer Manuskripte
Fachgebiet: 510 Mathematik
Normierte Schlagwörter (SWD): Berezin-Transformation , Toeplitz-Form
Abstract: We give a complete identification of the deformation quantization which was obtained from the Berezin- Toeplitz quantization on an arbitrary compact Kähler manifold. The deformation quantization with the opposite star-product proves to be a differential deformation quantization with separation of variables whose dassifying form is explicitly calculated. Its characteristic dass (which dassifies star-products up to equivalence) is obtained. The proof is based on the microlocal description of the Szegö kernel of a strictly pseudoconvex domain given by Boutet de Monvel and Sjöstrand.
Zusätzliche Informationen:




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen