More Results on B-Splines via Recurrence Relations


Meinardus, Günter ; Walz, Guido


[img]
Preview
PDF
144_1992.pdf - Published

Download (668kB)

URL: http://ub-madoc.bib.uni-mannheim.de/1682
URN: urn:nbn:de:bsz:180-madoc-16822
Document Type: Working paper
Year of publication: 1992
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Mathematik und Informatik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Mathematik > Mannheimer Manuskripte
Subject: 510 Mathematics
Classification: MSC: 41A15 65D07 ,
Subject headings (SWD): Differenzengleichung , B-Spline , Rekursion , Lineares Funktional
Keywords (English): Difference Equation , B-Spline , Recurrence Relation , Linear Functional
Abstract: The present paper is to be understood as a revision and continuation of a recent series of publications on recursively defined B-splines, due to C. deBoor and K. Höllig [4] and G. Ciascola [6, 7]. We define B-splines as solutions of a certain difference equation of evolution type, which is equivalent to the well-known B-spline recurrence relation. It turns out that this approach leads to very elementary and direct proofs, in particular without using the Marsden identity, of many important properties of the B-splines. Special emphasis is also laid on the probability theoretic aspects of these functions. Among other results, we prove explicit formulas for the kth moments, the variance and the distribution function of a B-spline.
Additional information:

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




+ Citation Example and Export

Meinardus, Günter ; Walz, Guido (1992) More Results on B-Splines via Recurrence Relations. Open Access [Working paper]
[img]
Preview


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item