Let E (M, IRn) be the collection of all smooth embeddings of a compact smooth manifold M into IRn. Given a fixed scalar product < , > on IRn , the pull-back of < , > by j ∈ E(M , IRn) is denoted by m(j). We show that m-1(m(j)) is a Fréchet manifold for any j ∈ E(M , IRn). This manifold is infinit dimensional if the codimension of M in IRn is large enough. The result links with Einstein's evolution equation and with elasticity theory.
Additional information:
Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.