Dominance-solvable lattice games


Zimper, Alexander


[img]
Preview
PDF
dp04_18.pdf - Published

Download (495kB)

URL: http://ub-madoc.bib.uni-mannheim.de/2726
URN: urn:nbn:de:bsz:180-madoc-27268
Document Type: Working paper
Year of publication: 2004
The title of a journal, publication series: None
Publication language: English
Institution: School of Law and Economics > Sonstige - Fakultät für Rechtswissenschaft und Volkswirtschaftslehre
MADOC publication series: Sonderforschungsbereich 504 > Rationalitätskonzepte, Entscheidungsverhalten und ökonomische Modellierung (Laufzeit 1997 - 2008)
Subject: 330 Economics
Classification: JEL: C62 C72 ,
Subject headings (SWD): Oligopol , Auktionstheorie , Bankenkrise , Nichtkooperatives Spiel , Maximalbelastungstheorie
Keywords (English): Supermodular games , strategic complementarities , strategic substitutes , cournot oligopoly , auctions with unknown allocation rule , bank runs
Abstract: This paper derives sufficient and necessary conditions for dominance-solvability of so-called lattice games whose strategy sets have a lattice structure while they simultaneously belong to some metric space. The argument combines and extends Moulin's (1984) approach for nice games and Milgrom and Roberts' (1990) approach for supermodular games. The analysis covers - but is not restricted to - the case of actions being strategic complements as well as the case of actions being strategic substitutes. Applications are given for n-firm Cournot oligopolies, auctions with bidders who are optimistic - respectively pessimistic - with respect to an imperfectly known allocation rule, and Two-player Bayesian models of bank runs.
Additional information:




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadata export


Citation


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item