Uniqueness conditions for point-rationalizable solutions of games with metrizable strategy sets


Zimper, Alexander


[img]
Vorschau
PDF
dp03_28.pdf - Veröffentlichte Version

Download (415kB)

URL: http://ub-madoc.bib.uni-mannheim.de/2757
URN: urn:nbn:de:bsz:180-madoc-27579
Dokumenttyp: Arbeitspapier
Erscheinungsjahr: 2003
Titel einer Zeitschrift oder einer Reihe: None
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Rechtswissenschaft und Volkswirtschaftslehre > Sonstige - Fakultät für Rechtswissenschaft und Volkswirtschaftslehre
MADOC-Schriftenreihe: Sonderforschungsbereich 504 > Rationalitätskonzepte, Entscheidungsverhalten und ökonomische Modellierung (Laufzeit 1997 - 2008)
Fachgebiet: 330 Wirtschaft
Fachklassifikation: JEL: C72 C62 ,
Normierte Schlagwörter (SWD): Nash-Gleichgewicht , Spieltheorie , Nichtkooperatives Spiel
Freie Schlagwörter (Englisch): Uniqueness , existence, point-rationalizability , Nash equilibrium , fixed point theorem , Cournot competition
Abstract: The unique point-rationalizable solution of a game is the unique Nash equilibrium. However, this solution has the additional advantage that it can be justified by the epistemic assumption that it is Common Knowledge of the players that only best responses are chosen. Thus, games with a unique point-rationalizable solution allow for a plausible explanation of equilibrium play in one-shot strategic situations, and it is therefore desireable to identify such games. In order to derive sufficient and necessary conditions for unique point-rationalizable solutions this paper adopts and generalizes the contraction-property approach of Moulin (1984) and of Bernheim (1984). Uniqueness results obtained in this paper are derived under fairly general assumptions such as games with arbitrary metrizable strategy sets and are especially useful for complete and bounded, for compact, as well as for finite strategy sets. As a mathematical side result existence of a unique fixed point is proved under conditions that generalize a fixed point theorem due to Edelstein (1962).
Zusätzliche Informationen:




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen