Lagrange interpolation and quasi-interpolation using trivariate splines on a uniform partition


Schneider, Georg Hubert


[img] PDF
Dissertation_Georg_Hubert_Schneider.pdf - Published

Download (6MB)

URL: https://ub-madoc.bib.uni-mannheim.de/36138
URN: urn:nbn:de:bsz:180-madoc-361383
Document Type: Doctoral dissertation
Year of publication: 2013
Place of publication: Mannheim
University: Universität Mannheim
Evaluator: Neuenkirch, Andreas
Date of oral examination: 21 November 2013
Publication language: English
Institution: School of Business Informatics and Mathematics > Wirtschaftsmathematik II (Neuenkirch 2013-)
Subject: 510 Mathematics
Subject headings (SWD): Approximationstheorie , Multivariate Approximation , Spline , Bernstein-Bézier-Darstellung , Interpolation , Konvexität , Volumendaten , Kubisch raumzentriertes Gitter
Individual keywords (German): Multivariate Splinetheorie
Keywords (English): approximation theory , multivariate approximation , multivariate splines , Bernstein-Bézier techniques , interpolation , convexity , volume data , body-centered cubic grid
Abstract: We develop quasi-interpolation methods and a Lagrange interpolation method for trivariate splines on a regular tetrahedral partition, based on the Bernstein-Bézier representation of polynomials. The partition is based on the bodycentered cubic grid. Our quasi-interpolation operators use quintic C2 splines and are defined by giving explicit formulae for each coefficient. One operator satisfies a certain convexity condition, but has sub-optimal approximation order. A second operator has optimal approximation order, while a third operator interpolates the provided data values. The first two operators are defined by a small set of computation rules which can be applied independently to all tetrahedra of the underlying partition. The interpolating operator is more complex while maintaining the best-possible approximation order for the spline space. It relies on a decomposition of the partition into four classes, for each of which a set of computation rules is provided. Moreover, we develop algorithms that construct blending operators which are based on two quasi-interpolation operators defined for the same spline space, one of which is convex. The resulting blending operator satisfies the convexity condition for a given data set. The local Lagrange interpolation method is based on cubic C1 splines and focuses on low locality. Our method is 2-local, while comparable methods are at least 4-local. We provide numerical tests which confirm the results, and high-quality visualizations of both artificial and real-world data sets.
Translation of the title: Lagrange-Interpolation und Quasi-Interpolation mit trivariaten Splines auf einer regelmäßigen Partition (German)
Translation of the abstract: Wir entwickeln Quasi-Interpolationsmethoden und eine Methode zur lokalen Lagrange-Interpolation mit trivariaten Splines, definiert über einer regelmäßigen Tetraederpartition. Die Splines basieren auf der Bernstein-Bézier Darstellung trivariater Polynome. Die Tetraederpartition basiert auf dem kubisch innenzentrierten Gitter (body-centered cubic grid). Die Quasi-Interpolationsoperatoren verwenden quintische C2 Splines und sind durch explizite Formeln für die Koeffizienten definiert. Der erste Operator genügt einer gewissen Konvexitätsbedingung, besitzt aber sub-optimale Approximationsordnung. Der zweite Operator besitzt die für den Splineraum bestmögliche Approximationsordnung, während der dritte Operator die bereitgestellten Daten interpoliert. Zur Definition der ersten beiden Operatoren genügt ein einzelner Satz an Berechnungsformeln für die Koeffizienten, der auf alle Tetraeder der Partition unabhängig voneinander angewendet werden kann. Der interpolierende Operator ist komplexer, besitzt aber ebenfalls die bestmögliche Approximationsordnung. Dem liegt eine Zerlegung der Partition in vier Tetraederklassen zugrunde, für die jeweils ein Formelsatz zur Berechnung der Koeffizienten vorliegt. Darüber hinaus entwickeln wir Algorithmen, die, basierend auf zwei Quasi-Interpolationsoperatoren, von denen einer konvex ist, einen Hybrid-Operator konstruieren. Der Hybrid-Operator erfüllt das Konvexitätskriterium für den gegebenen Datensatz. Die lokale Lagrange-Interpolationsmethode verwendet kubische C1 Splines und wurde mit Hinblick auf eine möglichst geringe Lokalität entwickelt. Die Methode ist 2-lokal, während vergleichbare Methoden eine Lokalität von mindestens 4 besitzen. Unsere numerischen Tests bestätigen die Ergebnisse. Wir erzeugen Visualisierungen, sowohl von synthetischen Funktionen, als auch von Datensätzen aus Computertomographen, die die Qualität der Rekonstruktionen aufzeigen. (German)

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




+ Citation Example and Export

Schneider, Georg Hubert (2013) Lagrange interpolation and quasi-interpolation using trivariate splines on a uniform partition. Open Access Mannheim [Doctoral dissertation]
[img]


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item