Approximations of time-dependent unreliable flow lines with finite buffers
Göttlich, Simone
;
Kühn, Sebastian
;
Schwarz, Justus Arne
;
Stolletz, Raik
DOI:
|
https://doi.org/10.1007/s00186-015-0529-6
|
URL:
|
https://link.springer.com/article/10.1007%2Fs00186...
|
Weitere URL:
|
https://www.researchgate.net/publication/290797237...
|
Dokumenttyp:
|
Zeitschriftenartikel
|
Erscheinungsjahr:
|
2016
|
Titel einer Zeitschrift oder einer Reihe:
|
Mathematical Methods of Operations Research
|
Band/Volume:
|
83
|
Heft/Issue:
|
3
|
Seitenbereich:
|
295-323
|
Ort der Veröffentlichung:
|
Berlin ; Heidelberg
|
Verlag:
|
Springer
|
ISSN:
|
1432-2994 , 1432-5217
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Scientific Computing (Göttlich 2011-) Fakultät für Betriebswirtschaftslehre > ABWL u. Produktion (Stolletz 2010-)
|
Fachgebiet:
|
330 Wirtschaft
|
Freie Schlagwörter (Englisch):
|
Unreliable flow line ; Sampling ; Mixed-integer program ; Conservation laws ; Piecewise deterministic process
|
Abstract:
|
Flow lines process discrete workpieces on consecutive machines, which are coupled by buffers. Their operating environment is often stochastic and time-dependent. For the flow line under consideration, the stochasticity is generated by random breakdowns and successive stochastic repair times, whereas the processing times are deterministic. However, the release rate of workpieces to the line is time-dependent, due to changes in demand. The buffers between the machines may be finite or infinite. We introduce two new sampling approaches for the performance evaluation of such flow lines: one method utilizes an approximation based on a mixed-integer program in discrete time with discrete material, while the other approximation is based on partial and ordinary differential equations in continuous time and with a continuous flow of material. In addition, we sketch a proof that these two approximations are equivalent under some linearity assumptions. A computational study demonstrates the accuracy of both approximations relative to a discrete-event simulation in continuous time. Furthermore, we reveal some effects occurring in unreliable flow lines with time-dependent processing rates.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Göttlich, Simone
;
Kühn, Sebastian
;
Schwarz, Justus Arne
;
Stolletz, Raik
Google Scholar:
Göttlich, Simone
;
Kühn, Sebastian
;
Schwarz, Justus Arne
;
Stolletz, Raik
ORCID:
Göttlich, Simone ORCID: 0000-0002-8512-4525 ; Kühn, Sebastian ; Schwarz, Justus Arne ; Stolletz, Raik
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|