Log-likelihood-based pseudo-R2 in logistic regression : deriving sample-sensitive benchmarks


Hemmert, Giselmar A. J. ; Edinger-Schons, Laura Marie ; Wieseke, Jan ; Schimmelpfennig, Heiko



DOI: https://doi.org/10.1177/0049124116638107
URL: http://journals.sagepub.com/doi/10.1177/0049124116...
Weitere URL: https://www.researchgate.net/publication/298899419...
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2018
Titel einer Zeitschrift oder einer Reihe: Sociological Methods & Research : SMR
Band/Volume: 47
Heft/Issue: 3
Seitenbereich: 507-531
Ort der Veröffentlichung: Thousand Oaks [u.a.]
Verlag: Sage Publ.
ISSN: 0049-1241 , 1552-8294
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Betriebswirtschaftslehre > Sustainable Business (Edinger-Schons 2015-2022)
Fachgebiet: 330 Wirtschaft
Freie Schlagwörter (Englisch): pseudo-R2 , logistic regression , goodness-of-fit , benchmarks , reporting
Abstract: The literature proposes numerous so-called pseudo-R2 measures for evaluating “goodness of fit” in regression models with categorical dependent variables. Unlike ordinary least square-R2, log-likelihood-based pseudo-R2s do not represent the proportion of explained variance but rather the improvement in model likelihood over a null model. The multitude of available pseudo-R2 measures and the absence of benchmarks often lead to confusing interpretations and unclear reporting. Drawing on a meta-analysis of 274 published logistic regression models as well as simulated data, this study investigates fundamental differences of distinct pseudo-R2 measures, focusing on their dependence on basic study design characteristics. Results indicate that almost all pseudo-R2s are influenced to some extent by sample size, number of predictor variables, and number of categories of the dependent variable and its distribution asymmetry. Hence, an interpretation by goodness-of-fit benchmark values must explicitly consider these characteristics. The authors derive a set of goodness-of-fit benchmark values with respect to ranges of sample size and distribution of observations for this measure. This study raises awareness of fundamental differences in characteristics of pseudo-R2s and the need for greater precision in reporting these measures.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen