A unified framework for frequent sequence mining with subsequence constraints


Beedkar, Kaustubh ; Gemulla, Rainer ; Mertens, Wim


[img]
Vorschau
PDF
A Unified Framework for Frequent Sequence Mining with Subsequence Constraints.pdf - Veröffentlichte Version

Download (1MB)

DOI: https://doi.org/10.1145/3321486
URL: https://madoc.bib.uni-mannheim.de/48227
Weitere URL: https://dl.acm.org/citation.cfm?id=3321486
URN: urn:nbn:de:bsz:180-madoc-482279
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2019
Titel einer Zeitschrift oder einer Reihe: ACM Transactions on Database Systems : TODS
Band/Volume: 44
Heft/Issue: 3
Seitenbereich: 11:1-11:42
Ort der Veröffentlichung: New York, NY
Verlag: ACM Press
ISSN: 0362-5915 , 1557-4644
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science I: Data Analytics (Gemulla 2014-)
Lizenz: CC BY 4.0 Creative Commons Namensnennung 4.0 International (CC BY 4.0)
Fachgebiet: 004 Informatik
Abstract: Frequent sequence mining methods often make use of constraints to control which subsequences should be mined. A variety of such subsequence constraints has been studied in the literature, including length, gap, span, regular-expression, and hierarchy constraints. In this article, we show that many subsequence constraints—including and beyond those considered in the literature—can be unified in a single framework. A unified treatment allows researchers to study jointly many types of subsequence constraints (instead of each one individually) and helps to improve usability of pattern mining systems for practitioners. In more detail, we propose a set of simple and intuitive “pattern expressions” to describe subsequence constraints and explore algorithms for efficiently mining frequent subsequences under such general constraints. Our algorithms translate pattern expressions to succinct finite-state transducers, which we use as computational model, and simulate these transducers in a way suitable for frequent sequence mining. Our experimental study on real-world datasets indicates that our algorithms—although more general—are efficient and, when used for sequence mining with prior constraints studied in literature, competitive to (and in some cases superior to) state-of-the-art specialized methods.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen