Predicting instance type assertions in knowledge graphs using stochastic neural networks
Weller, Tobias
;
Acosta, Maribel
DOI:
|
https://doi.org/10.1145/3459637.3482377
|
URL:
|
https://madoc.bib.uni-mannheim.de/60877
|
Weitere URL:
|
https://dl.acm.org/doi/abs/10.1145/3459637.3482377
|
URN:
|
urn:nbn:de:bsz:180-madoc-608771
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr:
|
2021
|
Buchtitel:
|
CIKM '21 : proceedings of the 30th ACM International Conference on Information & Knowledge Management
|
Seitenbereich:
|
2111-2118
|
Veranstaltungstitel:
|
CIKM '21
|
Veranstaltungsort:
|
Online
|
Veranstaltungsdatum:
|
01.-05.11.2021
|
Herausgeber:
|
Demartini, Gianluca
;
Zuccon, Guido
;
Culpepper, J. Shane
;
Huang, Zi
;
Tong, Hanghang
|
Ort der Veröffentlichung:
|
New York, NY
|
Verlag:
|
Association for Computing Machinery
|
ISBN:
|
978-1-4503-8446-9
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Data Science (Paulheim 2018-)
|
Bereits vorhandene Lizenz:
|
Creative Commons Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International (CC BY-SA 4.0)
|
Fachgebiet:
|
004 Informatik
|
Freie Schlagwörter (Englisch):
|
entity type prediction , entity classification , knowledge graphs , stochastic networks
|
Abstract:
|
Instance type information is particularly relevant to perform reasoning and obtain further information about entities in knowledge graphs (KGs). However, during automated or pay-as-you-go KG construction processes, instance types might be incomplete or missing in some entities. Previous work focused mostly on representing entities and relations as embeddings based on the statements in the KG. While the computed embeddings encode semantic descriptions and preserve the relationship between the entities, the focus of these methods is often not on predicting schema knowledge, but on predicting missing statements between instances for completing the KG. To fill this gap, we propose an approach that first learns a KG representation suitable for predicting instance type assertions. Then, our solution implements a neural network architecture to predict instance types based on the learned representation. Results show that our representations of entities are much more separable with respect to their associations with classes in the KG, compared to existing methods. For this reason, the performance of predicting instance types on a large number of KGs, in particular on cross-domain KGs with a high variety of classes, is significantly better in terms of F1-score than previous work.
|
Zusätzliche Informationen:
|
Online-Ressource
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
| Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|