Epidemic effects in the diffusion of emerging digital technologies: evidence from artificial intelligence adoption


Dahlke, Johannes ; Beck, Mathias ; Kinne, Jan ; Lenz, David ; Dehghan, Robert ; Wörter, Martin ; Ebersberger, Bernd


[img] PDF
1-s2.0-S0048733323002019-main.pdf - Veröffentlichte Version

Download (7MB)

DOI: https://doi.org/10.1016/j.respol.2023.104917
URL: https://www.sciencedirect.com/science/article/pii/...
URN: urn:nbn:de:bsz:180-madoc-663355
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2024
Titel einer Zeitschrift oder einer Reihe: Research Policy
Band/Volume: 53
Heft/Issue: 2, Article 104917
Seitenbereich: 1-24
Ort der Veröffentlichung: Amsterdam [u.a.]
Verlag: Elsevier
ISSN: 0048-7333 , 1873-7625
Sprache der Veröffentlichung: Englisch
Einrichtung: Außerfakultäre Einrichtungen > Institut für Mittelstandsforschung (ifm)
Fakultät für Betriebswirtschaftslehre > Mittelstandsforschung u. Entrepreneurship (Woywode 2007-)
Bereits vorhandene Lizenz: Creative Commons Namensnennung 4.0 International (CC BY 4.0)
Fachgebiet: 330 Wirtschaft
Abstract: The properties of emerging, digital, general-purpose technologies make it hard to observe their adoption by firms and identify the salient determinants of adoption. However, these aspects are critical since the patterns related to early-stage diffusion establish path-dependencies which have implications for the distribution of the technological opportunities and socio-economic returns linked to these technologies. We focus on the case of artificial intelligence (AI) and train a transformer language model to identify firm-level AI adoption using textual data from over 1.1 million websites and constructing a hyperlink network that includes >380,000 firms in Germany, Austria, and Switzerland. We use these data to expand and test epidemic models of inter-firm technology diffusion by integrating the concepts of social capital and network embeddedness. We find that AI adoption is related to three epidemic effect mechanisms: 1) Indirect co-location in industrial and regional hot-spots associated to production of AI knowledge; 2) Direct exposure to sources transmitting deep AI knowledge; 3) Relational embeddedness in the AI knowledge network. The pattern of adoption identified is highly clustered and features a rather closed system of AI adopters which is likely to hinder its broader diffusion. This has implications for policy which should facilitate diffusion beyond localized clusters of expertise. Our findings also point to the need to employ a systemic perspective to investigate the relation between AI adoption and firm performance to identify whether appropriation of the benefits of AI depends on network position and social capital.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen