Measurement of multidimensional classroom composition using the concept of hypervolumes
Thielmann, Merle-Sophie
;
Karst, Karina
Dokumenttyp:
|
Präsentation auf Konferenz
|
Erscheinungsjahr:
|
2023
|
Veranstaltungstitel:
|
EARLI 2023, 20th Biennial EARLI Conference
|
Veranstaltungsort:
|
Thessaloniki, Greece
|
Veranstaltungsdatum:
|
22.-26.08.2023
|
Verwandte URLs:
|
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Sozialwissenschaften > Unterrichtsqualität in heterogenen Kontexten (Karst 2023-)
|
Fachgebiet:
|
370 Erziehung, Schul- und Bildungswesen
|
Freie Schlagwörter (Deutsch):
|
Heterogenität , Multidimensionale Heterogenität
|
Abstract:
|
The present study proposes a new measure of classroom composition, which allows the integration of diversity on several social dimensions into a single index. Classroom composition can thus be characterized in a more complex way, which is especially promising from an intersectional viewpoint.
We adapt the hypervolume concept from ecological trait modeling, which represents students as points within a multidimensional trait space spanned by the composition variables of interest, and classrooms as so-called hypervolumes which describe the space covered by these points (Blonder et al., 2018). Hypervolumes can be characterized through their volume and average distance of students from the hypervolume centroid (dispersion).
Using data from 62 fifth-grade classrooms in Germany, we investigate the relationship of hypervolume indices and single-dimension measures of classroom composition. Additionally, hypervolume indices are tested as predictors of individual student achievement in multilevel models.
We find significant correlations (r = 0.20 – 0.61) between volume and dispersion of hypervolumes and range and standard deviation on single dimensions. Hypervolume indices do not significantly predict individual student achievement. Our correlative results indicate the concurrent validity of hypervolume measures. Further investigation of their predictive validity is needed and might be obtained by using larger datasets.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|