Stochastic routing optimized for autonomous driving
Samara, Adam
|
PDF
Dissertation_Veröffentlichung.pdf
- Veröffentlichte Version
Download (14MB)
|
URL:
|
https://madoc.bib.uni-mannheim.de/60206
|
URN:
|
urn:nbn:de:bsz:180-madoc-602065
|
Dokumenttyp:
|
Dissertation
|
Erscheinungsjahr:
|
2021
|
Ort der Veröffentlichung:
|
Mannheim
|
Hochschule:
|
Universität Mannheim
|
Gutachter:
|
Göttlich, Simone
|
Datum der mündl. Prüfung:
|
19 Juli 2021
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Scientific Computing (Göttlich 2011-)
|
Lizenz:
|
Creative Commons Namensnennung 4.0 International (CC BY 4.0)
|
Fachgebiet:
|
510 Mathematik
|
Freie Schlagwörter (Englisch):
|
vehicle routing , autonomous driving , copulas , multicriteria optimization
|
Abstract:
|
In this thesis, we propose a novel algorithm for stochastic routing optimized for autonomous vehicles. The key idea of stochastic routing is to include information on travel time reliability, rather than only estimating travel time itself. Travel time reliability is of major importance for travelers and transportation managers as it simplifies decision making and schedule planning.
The concept of stochastic routing is then extended to fit the specific needs for an optimal autonomous drive. In near future, when vehicles enabled with fully autonomous driving become available, the autonomous driving features will only be possible on roads that fulfil certain criteria. Thus, when searching for an optimal route for one origin-destination-pair, we are not only interested in the travel time, but also on the route’s properties concerning autonomous driving.
We estimate path travel time reliability by using empirical travel time data on segment-level. For that purpose we dive into the mathematical area of probability theory. First, we measure dependence between road segments.
Then we use copulas for estimating travel time distribution on path-level by including the dependence between neighbouring road segments. In order to improve efficiency, which is needed for a real-world application, we use the
following hybrid approach. We take convolution, which assumes independence, and extend it to the dependent case by integrating copulas, referred to as copula-based Dependent Discrete Convolution (DDC). Based on DDC we develop a methodology for stochastic routing.
We formulate a multicriteria optimization problem, in order to find a route optimized for an autonomous drive. Different approaches to obtain one optimal solution from the Pareto front are compared, and the best fitting one
is selected. This framework is then combined with the stochastic routing methodology.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
| Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|