UL Website
|
Imprint
|
Privacy Policy
|
Print
|
Home
Browse
Fulltexts
University bibliography
Statistics
About MADOC
Help
Contact
Login
Advanced Search
Export results as
ASCII Citation
BibTeX
CSL JSON
Dublin Core
Dublin Core SFX
EP3 XML
EndNote
HTML Citation
JSON
MARC21 XML
Multiline CSV
Office Document
Reference Manager
RSS 1.0
RSS 2.0
Citation
Faculties and Departments
(35912)
School of Business Informatics and Mathematics
(3698)
Mathematical Finance (Prömel 2019-)
(15)
Order by:
Year of publication
|
Authors
|
Document Type
|
No order
Skip to:
2023
|
2022
|
2021
|
2020
|
2019
|
2018
|
2017
2023
Allan, Andrew L.
;
Cuchiero, Christa
;
Liu, Chong
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
(2023)
Model-free portfolio theory: A rough path approach.
Mathematical Finance Malden, Mass. [u.a.] 33 3 709-765 [Article]
2022
Łochowski, Rafał M.
;
Perkowski, Nicolas
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
(2022)
One-dimensional game-theoretic differential equations.
International Journal of Approximate Reasoning Amsterdam [u.a.] 141 11-27 [Article]
2021
Liu, Chong
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Teichmann, Josef
(2021)
Stochastic analysis with modelled distributions.
Stochastics and Partial Differential Equations New York, NY 9 2021 343-379 [Article]
Döring, Leif
ORCID: 0000-0002-4569-5083
;
Gonon, Lukas
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Reichmann, Oleg
(2021)
Existence and uniqueness results for time-inhomogeneous time-change equations and Fokker-Planck equations.
Journal of Theoretical Probability New York, NY [u.a.] 34 1 173-205 [Article]
Liu, Chong
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Teichmann, Josef
(2021)
On Sobolev rough paths.
Journal of Mathematical Analysis and Applications Amsterdam [u.a.] 497 1 Article 124876 [Article]
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Trabs, Mathias
(2021)
Paracontrolled distribution approach to stochastic Volterra equations.
Journal of Differential Equations Orlando, FL [u.a.] 302 222-272 [Article]
Łochowski, Rafał M.
;
Obłój, Jan
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Siorpaes, Pietro
(2021)
Local times and Tanaka–Meyer formulae for càdlàg paths.
Electronic Journal of Probability : EJP Seattle, WA 26 Article 77 1-29 [Article]
Cheridito, Patrick
;
Kiiski, Matti
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Soner, H. Mete
(2021)
Martingale optimal transport duality.
Mathematische Annalen Berlin ; Göttingen ; Heidelberg 379 3-4 1685-1712 [Article]
Allan, Andrew L.
;
Liu, Chong
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
(2021)
Càdlàg rough differential equations with reflecting barriers.
Stochastic Processes and Their Applications Amsterdam [u.a.] 142 79-104 [Article]
2020
Kiiski, Matti
(2020)
The Riesz representation theorem and weak∗ compactness of semimartingales.
Finance and Stochastics Berlin [u.a.] 24 4 827-870 [Article]
Liu, Chong
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Teichmann, Josef
(2020)
Characterization of nonlinear Besov spaces.
Transactions of the American Mathematical Society Providence, RI 373 1 529-550 [Article]
2019
Döring, Leif
ORCID: 0000-0002-4569-5083
;
Gonon, Lukas
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Reichmann, Oleg
(2019)
On Skorokhod embeddings and Poisson equations.
The Annals of Applied Probability Cleveland, OH ; Hayward, CA 29 4 2302-2337 [Article]
Bartl, Daniel
;
Kupper, Michael
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Tangpi, Ludovic
(2019)
Duality for pathwise superhedging in continuous time.
Finance and Stochastics Berlin ; Heidelberg 23 3 697-728 [Article]
2018
Döring, Leif
ORCID: 0000-0002-4569-5083
;
Gonon, Lukas
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Reichmann, Oleg
(2018)
Existence and uniqueness results for time-inhomogeneous time-change equations and Fokker-Planck equations.
Mannheim [u.a.] [Working paper]
2017
Döring, Leif
ORCID: 0000-0002-4569-5083
;
Gonon, Lukas
;
Prömel, David J.
ORCID: 0000-0001-7028-7500
;
Reichmann, Oleg
(2017)
On Skorokhod embeddings and Poisson equations.
Mannheim [u.a.] [Working paper]
This list was created automatically on
Sun Dec 3 07:47:21 2023 CET