UL Website
|
Imprint
|
Privacy Policy
|
Print
|
Home
Browse
Fulltexts
University bibliography
Statistics
About MADOC
Help
Contact
Login
Advanced Search
Export results as
ASCII Citation
BibTeX
CSL JSON
Dublin Core
Dublin Core SFX
EP3 XML
EndNote
HTML Citation
JSON
MARC21 XML
Multiline CSV
Office Document
Reference Manager
RSS 1.0
RSS 2.0
Citation
Faculties and Departments
(37416)
School of Business Informatics and Mathematics
(3892)
Wirtschaftsmathematik II: Stochastische Numerik (Neuenkirch 2013-)
(39)
Order by:
Year of publication
|
Authors
|
Document Type
|
No order
Kloeden, Peter E.
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2013)
Convergence of numerical methods for stochastic differential equations in mathematical finance.
Gerstner, Thomas
Recent Developments in Computational Finance Interdisciplinary Mathematical Sciences New Jersey, NJ [u.a.] 14 49-80 [Book chapter]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Tindel, Samy
(2014)
A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise.
Statistical Inference for Stochastic Processes Dordrecht [u.a.] 17 1 99-120 [Article]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Szpruch, Lukasz
(2014)
First order strong approximations of scalar SDEs defined in a domain.
Numerische Mathematik Berlin [u.a.] 128 1 103-136 [Article]
Altmayer, Martin
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2015)
Multilevel Monte Carlo quadrature of discontinuous payoffs in the generalized Heston model using Malliavin integration by parts.
SIAM Journal on Financial Mathematics : SIFIN Philadelphia, Pa. 6 1 22-52 [Article]
Akhtari, Bahareh
;
Babolian, Esmail
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2015)
An Euler scheme for stochastic delay differential equations on unbounded domains: pathwise convergence.
Discrete and Continuous Dynamical Systems : DCDS. Series B Springfield, Mo. 20 1 23-38 [Article]
Altmayer, Martin
;
Dereich, Steffen
;
Li, Sangmeng
;
Müller-Gronbach, Thomas
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Ritter, Klaus
;
Yaroslavtseva, Larissa
(2014)
Constructive quantization and multilevel algorithms for quadrature of stochastic differential equations.
Dahlke, Stephan
Extraction of Quantifiable Information from Complex Systems Lecture Notes in Computational Science and Engineering Cham 102 109-132 [Book chapter]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Shalaiko, Taras
(2015)
The relation between mixed and rough SDEs and its application to numerical methods.
Stochastic Analysis and Applications Philadelphia, Pa. 33 5 927-942 [Article]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Shalaiko, Taras
(2016)
The maximum rate of convergence for the approximation of the fractional Lévy area at a single point.
Journal of Complexity Amsterdam 33 107-117 [Article]
Altmayer, Martin
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2017)
Discretising the Heston model: an analysis of the weak convergence rate.
IMA Journal of Numerical Analysis : IMAJNA Oxford 37 4 1930-1960 [Article]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Parczewski, Peter
(2018)
Optimal approximation of skorohod integrals.
Journal of Theoretical Probability New York, NY [u.a.] 31 1 206-231 [Article]
Altmayer, Martin
(2015)
Quadrature of discontinuous SDE functionals using Malliavin integration by parts.
Mannheim [Doctoral dissertation]
Preview
Altmayer, Martin
(2015)
Quadrature of discontinuous SDE functionals using Malliavin integration by parts.
München [Book]
Garrido-Atienza, Maria J.
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Schmalfuß, Björn
(2018)
Asymptotical stability of differential equations driven by Hölder continuous paths.
Journal of Dynamics and Differential Equations New York, NY [u.a.] 30 1 359-377 [Article]
Duc, Luu H.
;
Garrido-Atienza, Maria J.
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Schmalfuß, Björn
(2018)
Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in (1/2,1).
Journal of Differential Equations Orlando, FL [u.a.] 264 2 1119-1145 [Article]
Göttlich, Simone
ORCID: 0000-0002-8512-4525
;
Lux, Kerstin
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2019)
The Euler scheme for stochastic differential equations with discontinuous drift coefficient: a numerical study of the convergence rate.
Advances in Difference Equations : ADE Cham 2019 Article 429 1-21 [Article]
Preview
Koch, Stefan
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2019)
The Mandelbrot-van Ness fractional Brownian motion is infinitely differentiable with respect to its Hurst parameter.
Discrete and Continuous Dynamical Systems : DCDS. Series B Springfield, MO 24 8 3865-3880 [Article]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Szölgyenyi, Michaela
;
Szpruch, Lukasz
(2019)
An adaptive Euler-Maruyama scheme for stochastic differential equations with discontinuous drift and its convergence analysis.
SIAM Journal on Numerical Analysis Philadelphia, PA 57 1 378-403 [Article]
Göttlich, Simone
ORCID: 0000-0002-8512-4525
;
Lux, Kerstin
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2017)
The Euler scheme for stochastic differential equations with discontinuous drift coefficient: A numerical study of the convergence rate.
Ithaca, NY [Working paper]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Szölgyenyi, Michaela
(2019)
The Euler-Maruyama scheme for SDEs with irregular drift: Convergence rates via reduction to a quadrature problem.
Ithaca, NY [Working paper]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Shalaiko, Taras
(2016)
The order barrier for strong approximation of rough volatility models.
Ithaca, NY [Working paper]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Nourdin, Ivan
;
Rößler, Andreas
;
Tindel, Samy
(2018)
Trees and asymptotic developments for fractional stochastic differential equations.
Ithaca, NY [Working paper]
Koch, Stefan
(2019)
Sensitivity results in stochastic analysis.
Mannheim [Doctoral dissertation]
Preview
Koch, Stefan
(2018)
Directional Malliavin derivatives: A characterisation of independence and a generalised chain rule.
Communications on Stochastic Analysis Baton Rouge, LA 12 2 137-156 [Article]
Parczewski, Peter
(2017)
Extensions of the Hitsuda–Skorokhod integral.
Communications on Stochastic Analysis Baton Rouge, LA 11 4 479-490 [Article]
Bender, Christian
;
Parczewski, Peter
(2018)
Discretizing Malliavin calculus.
Stochastic Processes and Their Applications Amsterdam [u.a.] 128 8 2489 - 2537 [Article]
Parczewski, Peter
(2017)
The self-normalized Donsker theorem revisited.
Modern Stochastics: Theory and Applications Vilnius 4 3 189-198 [Article]
Parczewski, Peter
(2017)
Optimal approximation of Skorohod integrals - examples with substandard rates.
Communications on Stochastic Analysis Baton Rouge, LA 11 1 43-61 [Article]
Parczewski, Peter
(2017)
Donsker-type theorems for correlated geometric fractional Brownian motions and related processes.
Electronic Communications in Probability : ECP Seattle, WA 22 Paper 55 1-13 [Article]
Parczewski, Peter
(2014)
A Wick functional limit theorem.
Probability and Mathematical Statistics Wrocław 34 1 127-145 [Article]
Parczewski, Peter
(2014)
A fractional Donsker theorem.
Stochastic Analysis and Applications Philadelphia, PA 32 2 328-347 [Article]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Szölgyenyi, Michaela
(2021)
The Euler-Maruyama scheme for SDEs with irregular drift: convergence rates via reduction to a quadrature problem.
IMA Journal of Numerical Analysis : IMAJNA Oxford 41 2 1164-1196 [Article]
Madensoy, Mehmet
(2020)
Change points and uniform confidence for spot volatility.
Mannheim [Doctoral dissertation]
Preview
Mickel, Annalena
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2021)
The weak convergence rate of two semi-exact discretization schemes for the Heston model.
Risks : Open Access Journal Basel 9 1 Article 23 [Article]
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2021)
D. Higham, P. Kloeden: "An introduction to the numerical simulation of stochastic differential equations".
Jahresbericht der Deutschen Mathematiker-Vereinigung Heidelberg 124 119-122 [Review]
Mickel, Annalena
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2023)
The weak convergence order of two Euler-type discretization schemes for the log-Heston model.
IMA Journal of Numerical Analysis : IMAJNA Oxford 43 6 3326-3356 [Article]
Hinrichs, Aicke
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
;
Novak, Erich
(2014)
Guest editors' preface.
Journal of Complexity Amsterdam [u.a.] 30 2 1 [Article]
Klingert, Sonja
;
Lee, Jong-Won
(2022)
Using real mobility patterns to assess the impact of 100% electrified mobility in a German city.
Energy Informatics Cham 5 Article 32 1-24 [Article]
Mickel, Annalena
(2023)
Weak and strong approximation of the Log-Heston model by Euler-Type methods and related topics.
Mannheim [Doctoral dissertation]
Mickel, Annalena
;
Neuenkirch, Andreas
ORCID: 0000-0002-0419-1225
(2023)
Sharp L1-approximation of the log-Heston stochastic differential equation by Euler-type methods.
The Journal of Computational Finance London 26 4 67-100 [Article]
This list was created automatically on
Mon Dec 9 07:37:37 2024 CET